Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
1.
Article En | MEDLINE | ID: mdl-38700016

Myosin phosphatase targeting subunit1 (MYPT1) is a critical subunit of myosin phosphatase (MP), which brings PP1Cδ phosphatase and its substrate together. We previously showed that MYPT1 depletion resulted in oblique chromatid segregation. Therefore, we hypothesized that MYPT1 may control microtubule-dependent motor activity. Dynein, a minus-end microtubule motor, is known to be involved in mitotic spindle assembly. We thus examined whether MYPT1 and dynein may interact. Proximity ligation assay and co-immunoprecipitation revealed that MYPT1 and dynein intermediate chain (DIC) were associated. We found that DIC phosphorylation is increased in MYPT1-depleted cells in vivo, and that MP was able to dephosphorylate DIC in vitro. MYPT1 depletion also altered the localization and motility of Rab7-containing vesicles. MYPT1-depletion dispersed the perinuclear Rab7 localization to the peripheral in interphase cells. The dispersed Rab7 localization was rescued by microinjection of a constitutively active, truncated MYPT1 mutant, supporting that MP is responsible for the altered Rab7 localization. Analyses of Rab7 vesicle trafficking also revealed that minus-end transport was reduced in MYPT1-depleted cells. These results suggest an unexpected role of MP: MP controls dynein activity in both mitotic and interphase cells, possibly by dephosphorylating dynein subunits including DIC.

2.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Article En | MEDLINE | ID: mdl-38644198

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Calcium Channel Blockers , Ryanodine Receptor Calcium Release Channel , Humans , Calcium/metabolism , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , Molecular Structure , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Structure-Activity Relationship , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/pharmacology , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/genetics
3.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38621141

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Tachycardia, Ventricular , Mice , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , Arrhythmias, Cardiac/genetics , Flecainide , Mutation, Missense , Death, Sudden, Cardiac , Mutation
4.
Eur J Med Chem ; 262: 115910, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37922828

Ryanodine receptor 2 (RyR2) is a Ca2+ release channel mainly located on the sarcoplasmic reticulum (SR) membrane of heart muscle cells and regulates the concentration of Ca2+ in the cytosol. RyR2 overactivation causes potentially lethal cardiac arrhythmias, but no specific inhibitor is yet available. Herein we developed the first highly potent and selective RyR2 inhibitor, TMDJ-035, containing 3,5-difluoro substituents on the A ring and a 4-fluoro substituent on the B ring, based on a comprehensive structure-activity relationship (SAR) study of tetrazole compound 1. The SAR study also showed that the amide conformation is critical for inhibitory potency. Single-crystal X-ray diffraction analysis and variable-temperature 1H NMR revealed that TMDJ-035 strongly favors cis-amide configuration, while the inactive analogue TMDJ-011 with a secondary amide takes trans-amide configuration. Examination of the selectivity among RyRs indicated that TMDJ-035 displayed high selectivity for RyR2. TMDJ-035 suppressed abnormal Ca2+ waves and transients in isolated cardiomyocytes from RyR2-mutated mice. It appears to be a promising candidate drug for treating cardiac arrhythmias due to RyR2 overactivation, as well as a tool for studying the mechanism and dynamics of RyR2 channel gating.


Amides , Ryanodine Receptor Calcium Release Channel , Mice , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , Amides/pharmacology , Amides/metabolism , Arrhythmias, Cardiac/drug therapy , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Calcium/metabolism , Calcium Signaling
5.
J Gen Physiol ; 155(11)2023 11 06.
Article En | MEDLINE | ID: mdl-37756589

Trimeric intracellular cation channels (TRIC-A and TRIC-B) are thought to provide counter-ion currents to enable charge equilibration across the sarco/endoplasmic reticulum (SR) and nuclear membranes. However, there is also evidence that TRIC-A may interact directly with ryanodine receptor type 1 (RyR1) and 2 (RyR2) to alter RyR channel gating. It is therefore possible that the reverse is also true, where the presence of RyR channels is necessary for fully functional TRIC channels. We therefore coexpressed mouse TRIC-A or TRIC-B with mouse RyR2 in HEK293 cells to examine if after incorporating membrane vesicles from these cells into bilayers, the presence of TRIC affects RyR2 function, and to characterize the permeability and gating properties of the TRIC channels. Importantly, we used no purification techniques or detergents to minimize damage to TRIC and RyR2 proteins. We found that both TRIC-A and TRIC-B altered the gating behavior of RyR2 and its response to cytosolic Ca2+ but that TRIC-A exhibited a greater ability to stimulate the opening of RyR2. Fusing membrane vesicles containing TRIC-A or TRIC-B into bilayers caused the appearance of rapidly gating current fluctuations of multiple amplitudes. The reversal potentials of bilayers fused with high numbers of vesicles containing TRIC-A or TRIC-B revealed both Cl- and K+ fluxes, suggesting that TRIC channels are relatively non-selective ion channels. Our results indicate that the physiological roles of TRIC-A and TRIC-B may include direct, complementary regulation of RyR2 gating in addition to the provision of counter-ion currents of both cations and anions.


Endoplasmic Reticulum , Ryanodine Receptor Calcium Release Channel , Humans , Animals , Mice , HEK293 Cells , Biophysics , Cytosol , Ion Channels
6.
Mol Pharmacol ; 104(6): 275-286, 2023 Dec.
Article En | MEDLINE | ID: mdl-37678938

Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.


Myocytes, Cardiac , Ryanodine Receptor Calcium Release Channel , Humans , Mice , Animals , Ryanodine Receptor Calcium Release Channel/metabolism , HEK293 Cells , Endoplasmic Reticulum/metabolism , Arrhythmias, Cardiac/metabolism , Sarcoplasmic Reticulum , Calcium Signaling , Calcium/metabolism , Mutation
7.
J Agric Food Chem ; 71(29): 11001-11007, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37462137

Ryanodine receptor (RyR) has been used as an insecticide target to control many destructive agricultural pests. The effectiveness of these insecticides has been limited by the spread of resistance mutations identified in pest RyRs, but the detailed molecular impacts of the individual mutations on the activity of different diamide compounds have not been fully explored. We created five HEK293 cell lines stably expressing wild type rabbit RyR1, wild type Spodoptera frugiperda RyR (Sf RyR), or Sf RyR carrying different resistance mutations, including G4891E, G4891E/I4734M, and Y4867F, respectively. R-CEPIA1er, a genetically encoded fluorescent protein, was also introduced in these cell lines to report the Ca2+ concentration in the endoplasmic reticulum. We systematically characterized the activities of six commercial diamide insecticides against different RyRs using the time-lapse fluorescence assay. Among them, cyantraniliprole (CYAN) displayed the highest activity against all three resistant Sf RyRs. The good performance of CYAN was confirmed by the toxicity assay using gene-edited Drosophila expressing the mutant RyRs, in which CYAN showed the lowest LD50 value for the double resistant mutant. In addition, we compared their acitivty between mammalian and insect RyRs and found that flubendiamide has the best insect-selectivity. The mechanism of the anti-resistance property and selectivity of the compounds was proposed based on the structural models generated by homology modeling and molecular docking. Our findings provide insights into the mechanism of insect resistance and guidance for developing effective RyR agonists that can selectively target resistant pests.


Insecticides , Moths , Humans , Animals , Rabbits , Insecticides/pharmacology , Insecticides/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Diamide/pharmacology , Molecular Docking Simulation , HEK293 Cells , Insecticide Resistance/genetics , Moths/genetics , Moths/metabolism , Mammals/metabolism
8.
Int J Rehabil Res ; 46(2): 187-192, 2023 Jun 01.
Article En | MEDLINE | ID: mdl-37039601

Constraint-induced movement therapy (CIMT) for the lower extremities CIMT (LE-CIMT) has been shown feasible and promising but the long-term outcomes remain uncertain. In this pilot study, we recruited eight participants with chronic stroke from our facility for persons with disabilities to determine changes in gait and balance throughout an extended treatment program based on the principles of LE-CIMT. The program consisted of a run-in phase (3 weeks), LE-CIMT phase (3 weeks), and maintenance phase (6 months). In the LE-CIMT phase (3.5 h/day, 5 days/week, 3 weeks), the participants received task-oriented training (3 h) and transfer package training (30 min). The maintenance phase (30 min/day, 2-3 times/week, 6 months) included a transfer package and conventional training. The assessments were performed in the beginning and after each phase using the Fugl-Meyer Assessment, 6-min walk test (6MWT), Berg Balance Scale (BBS), and 10-m walk test from which walking speed, cadence, and stride length were derived. Overall, 6MWT, BBS, walking speed, and cadence improved significantly over time (analysis of variance P  < 0.001). When comparing the results from before to after the LE-CIMT phase, 6MWT, BBS, walking speed, and cadence improved significantly ( P  = 0.002 to 0.022). At the end of the 6-month maintenance phase, further improvements relative to the after LE-CIMT phase were found for 6MWT, walking speed, and cadence ( P  = 0.002 to 0.034). These pilot results suggest that an extended treatment program based on the principles of LE-CIMT can improve balance and more so walking in the chronic phase of stroke.


Stroke Rehabilitation , Stroke , Humans , Follow-Up Studies , Pilot Projects , Stroke Rehabilitation/methods , Gait , Walking , Lower Extremity , Brain Damage, Chronic , Treatment Outcome , Exercise Therapy
9.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Article En | MEDLINE | ID: mdl-36866681

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Induced Pluripotent Stem Cells , Long QT Syndrome , Tachycardia, Ventricular , Humans , Calmodulin/genetics , Calmodulin/metabolism , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/metabolism , Arrhythmias, Cardiac , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Calcium/metabolism , Mutation
10.
Curr Opin Pharmacol ; 69: 102356, 2023 04.
Article En | MEDLINE | ID: mdl-36842386

Type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel on the sarcoplasmic reticulum of skeletal muscle, and it plays a central role in excitation-contraction (E-C) coupling. Mutations in RyR1 are implicated in various muscle diseases including malignant hyperthermia, central core disease, and myopathies. Currently, no specific treatment exists for most of these diseases. Recently, high-throughput screening (HTS) assays have been developed for identifying potential candidates for treating RyR-related muscle diseases. Currently, two different methods, namely a FRET-based assay and an endoplasmic reticulum Ca2+-based assay, are available. These assays identified several compounds as novel RyR1 inhibitors. In addition, the development of a reconstituted platform permitted HTS assays for E-C coupling modulators. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.


Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Humans , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Muscular Diseases/metabolism , Calcium Signaling/genetics , Muscle, Skeletal/metabolism , Drug Development , Calcium/metabolism , Mutation
11.
J Gen Physiol ; 154(12)2022 12 05.
Article En | MEDLINE | ID: mdl-36318155

In skeletal muscle excitation-contraction (E-C) coupling, depolarization of the plasma membrane triggers Ca2+ release from the sarcoplasmic reticulum (SR), referred to as depolarization-induced Ca2+ release (DICR). DICR occurs through the type 1 ryanodine receptor (RyR1), which physically interacts with the dihydropyridine receptor Cav1.1 subunit in specific machinery formed with additional essential components including ß1a, Stac3 adaptor protein, and junctophilins. Exome sequencing has accelerated the discovery of many novel mutations in genes encoding DICR machinery in various skeletal muscle diseases. However, functional validation is time-consuming because it must be performed in a skeletal muscle environment. In this study, we established a platform of the reconstituted DICR in HEK293 cells. The essential components were effectively transduced into HEK293 cells expressing RyR1 using baculovirus vectors, and Ca2+ release was quantitatively measured with R-CEPIA1er, a fluorescent ER Ca2+ indicator, without contaminant of extracellular Ca2+ influx. In these cells, [K+]-dependent Ca2+ release was triggered by chemical depolarization with the aid of inward rectifying potassium channel, indicating a successful reconstitution of DICR. Using the platform, we evaluated several Cav1.1 mutations that are implicated in malignant hyperthermia and myopathy. We also tested several RyR1 inhibitors; whereas dantrolene and Cpd1 inhibited DICR, procaine had no effect. Furthermore, twitch potentiators such as perchlorate and thiocyanate shifted the voltage dependence of DICR to more negative potentials without affecting Ca2+-induced Ca2+ release. These results well reproduced the findings with the muscle fibers and the cultured myotubes. Since the procedure is simple and reproducible, the reconstituted DICR platform will be highly useful for the validation of mutations and drug discovery for skeletal muscle diseases.


Muscular Diseases , Ryanodine Receptor Calcium Release Channel , Humans , Ryanodine Receptor Calcium Release Channel/metabolism , Calcium/metabolism , HEK293 Cells , Sarcoplasmic Reticulum/metabolism , Muscle Fibers, Skeletal/metabolism , Calcium Channels, L-Type/metabolism , Muscular Diseases/metabolism , Muscle, Skeletal/metabolism , Mutation , Drug Discovery
12.
Bioorg Med Chem ; 74: 117027, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36223685

Ryanodine receptor 1 (RyR1) is a Ca2+-release channel expressed on the sarcoplasmic reticulum (SR) membrane. RyR1 mediates release of Ca2+ from the SR to the cytoplasm to induce muscle contraction, and mutations associated with overactivation of RyR1 cause lethal muscle diseases. Dantrolene sodium salt (dantrolene Na) is the only approved RyR inhibitor to treat malignant hyperthermia patients with RyR1 mutations, but is poorly water-soluble. Our group recently developed a bioassay system and used it to identify quinoline derivatives such as 1 as potent RyR1 inhibitors. In the present study, we focused on modification of these inhibitors with the aim of increasing their water-solubility. First, we tried reducing the hydrophobicity by shortening the N-octyl chain at the quinolone ring of 1; the N-heptyl compound retained RyR1-inhibitory activity, but the N-hexyl compound showed decreased activity. Next, we introduced a more hydrophilic azaquinolone ring in place of quinolone; in this case, only the N-octyl compound retained activity. The sodium salt of N-octyl azaquinolone 7 showed similar inhibitory activity to dantrolene Na with approximately 1,000-fold greater solubility in saline.


Quinolones , Ryanodine Receptor Calcium Release Channel , Humans , Dantrolene/pharmacology , Water , Calcium/metabolism , Muscle, Skeletal/metabolism , Quinolones/pharmacology
13.
J Gen Physiol ; 154(11)2022 11 07.
Article En | MEDLINE | ID: mdl-36200983

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.


Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Calcium/metabolism , Malignant Hyperthermia/genetics , Mice , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Mutation
14.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Article En | MEDLINE | ID: mdl-35925888

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , HEK293 Cells , Hot Temperature , Humans , Malignant Hyperthermia/genetics , Malignant Hyperthermia/pathology , Membrane Proteins , Mice , Muscle, Skeletal/metabolism , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism
15.
Proc Natl Acad Sci U S A ; 119(30): e2122140119, 2022 07 26.
Article En | MEDLINE | ID: mdl-35867837

Ryanodine receptors (RyRs) are main regulators of intracellular Ca2+ release and muscle contraction. The Y522S mutation of RyR1 causes central core disease, a weakening myopathy, and malignant hyperthermia, a sudden and potentially fatal response to anesthetics or heat. Y522 is in the core of the N-terminal subdomain C of RyR1 and the mechanism of how this mutation orchestrates malfunction is unpredictable for this 2-MDa ion channel, which has four identical subunits composed of 15 distinct cytoplasmic domains each. We expressed and purified the RyR1 rabbit homolog, Y523S, from HEK293 cells and reconstituted it in nanodiscs under closed and open states. The high-resolution cryogenic electron microscopic (cryo-EM) three-dimensional (3D) structures show that the phenyl ring of Tyr functions in a manner analogous to a "spacer" within an α-helical bundle. Mutation to the much smaller Ser alters the hydrophobic network within the bundle, triggering rearrangement of its α-helices with repercussions in the orientation of most cytoplasmic domains. Examining the mutation-induced readjustments exposed a series of connected α-helices acting as an ∼100 Å-long lever: One end protrudes toward the dihydropyridine receptor, its molecular activator (akin to an antenna), while the other end reaches the Ca2+ activation site. The Y523S mutation elicits channel preactivation in the absence of any activator and full opening at 1.5 µM free Ca2+, increasing by ∼20-fold the potency of Ca2+ to activate the channel compared with RyR1 wild type (WT). This study identified a preactivated pathological state of RyR1 and a long-range lever that may work as a molecular switch to open the channel.


Malignant Hyperthermia , Muscle, Skeletal , Myopathy, Central Core , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Malignant Hyperthermia/genetics , Muscle, Skeletal/metabolism , Mutation , Myopathy, Central Core/genetics , Rabbits , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics
16.
Nat Commun ; 13(1): 2821, 2022 05 20.
Article En | MEDLINE | ID: mdl-35595836

Cardiac ryanodine receptor (RyR2) is a large Ca2+ release channel in the sarcoplasmic reticulum and indispensable for excitation-contraction coupling in the heart. RyR2 is activated by Ca2+ and RyR2 mutations are implicated in severe arrhythmogenic diseases. Yet, the structural basis underlying channel opening and how mutations affect the channel remains unknown. Here, we address the gating mechanism of RyR2 by combining high-resolution structures determined by cryo-electron microscopy with quantitative functional analysis of channels carrying various mutations in specific residues. We demonstrated two fundamental mechanisms for channel gating: interactions close to the channel pore stabilize the channel to prevent hyperactivity and a series of interactions in the surrounding regions is necessary for channel opening upon Ca2+ binding. Mutations at the residues involved in the former and the latter mechanisms cause gain-of-function and loss-of-function, respectively. Our results reveal gating mechanisms of the RyR2 channel and alterations by pathogenic mutations at the atomic level.


Calcium , Ryanodine Receptor Calcium Release Channel , Calcium/metabolism , Cryoelectron Microscopy , Mutation , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
17.
J Gen Physiol ; 154(9)2022 09 05.
Article En | MEDLINE | ID: mdl-35446340

Type 2 ryanodine receptor (RYR2) is a cardiac Ca2+ release channel in the ER. Mutations in RYR2 are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is associated with enhanced spontaneous Ca2+ release, which tends to occur when [Ca2+]ER reaches a threshold. Mutations lower the threshold [Ca2+]ER by increasing luminal Ca2+ sensitivity or enhancing cytosolic [Ca2+] ([Ca2+]cyt)-dependent activity. Here, to establish the mechanism relating the change in [Ca2+]cyt-dependent activity of RYR2 and the threshold [Ca2+]ER, we carried out cell-based experiments and in silico simulations. We expressed WT and CPVT-linked mutant RYR2s in HEK293 cells and measured [Ca2+]cyt and [Ca2+]ER using fluorescent Ca2+ indicators. CPVT RYR2 cells showed higher oscillation frequency and lower threshold [Ca2+]ER than WT cells. The [Ca2+]cyt-dependent activity at resting [Ca2+]cyt, Arest, was greater in CPVT mutants than in WT, and we found an inverse correlation between threshold [Ca2+]ER and Arest. In addition, lowering RYR2 expression increased the threshold [Ca2+]ER and a product of Arest, and the relative expression level for each mutant correlated with threshold [Ca2+]ER, suggesting that the threshold [Ca2+]ER depends on the net Ca2+ release rate via RYR2. Modeling reproduced Ca2+ oscillations with [Ca2+]cyt and [Ca2+]ER changes in WT and CPVT cells. Interestingly, the [Ca2+]cyt-dependent activity of specific mutations correlated with the age of disease onset in patients carrying them. Our data suggest that the reduction in threshold [Ca2+]ER for spontaneous Ca2+ release by CPVT mutation is explained by enhanced [Ca2+]cyt-dependent activity without requiring modulation of the [Ca2+]ER sensitivity of RYR2.


Ryanodine Receptor Calcium Release Channel , Tachycardia, Ventricular , Calcium/metabolism , HEK293 Cells , Humans , Mutation , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/metabolism
18.
Nihon Yakurigaku Zasshi ; 157(1): 15-22, 2022.
Article Ja | MEDLINE | ID: mdl-34980804

Type 1 ryanodine receptor (RyR1) plays a key role in Ca2+ release from the sarcoplasmic reticulum (SR) during excitation-contraction coupling of skeletal muscle. Mutations in RyR1 hyperactivate the channel to cause malignant hyperthermia (MH). MH is a serious complication characterized by skeletal muscle rigidity and elevated body temperature in response to commonly used inhalational anesthetics. Thus far, more than 300 mutations in RyR1 gene have been reported in patients with MH. Some heat stroke triggered by exercise or environmental heat stress is also related to MH mutations in the RyR1 gene. The only drug approved for ameliorating the symptoms of MH is dantrolene, which has been first developed in 1960s as a muscle relaxant. However, dantrolene has several disadvantages for clinical use: poor water solubility which makes rapid preparation difficult in emergency situations and long plasma half-life, which causes long-lasting side effects such as muscle weakness. Here we show that a novel RyR1-selective inhibitor, 6,7-(methylenedioxy)-1-octyl-4-quinolone-3-carboxylic acid (Compound 1, Cpd1), effectively rescues MH and heat stroke in new mouse model relevant to MH. Cpd1 has great advantages of higher water solubility and shorter plasma half-life compared to dantrolene. Our data suggest that Cpd1 has the potential to be a promising new candidate for effective treatment of patients carrying RyR1 mutations.


Malignant Hyperthermia , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Humans , Malignant Hyperthermia/drug therapy , Malignant Hyperthermia/genetics , Mice , Muscle, Skeletal/metabolism , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/metabolism
19.
Nihon Yakurigaku Zasshi ; 157(1): 3, 2022.
Article Ja | MEDLINE | ID: mdl-34980808
20.
Europace ; 24(3): 497-510, 2022 03 02.
Article En | MEDLINE | ID: mdl-34661651

AIMS: Gain-of-function mutations in RYR2, encoding the cardiac ryanodine receptor channel (RyR2), cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Whereas, genotype-phenotype correlations of loss-of-function mutations remains unknown, due to a small number of analysed mutations. In this study, we aimed to investigate their genotype-phenotype correlations in patients with loss-of-function RYR2 mutations. METHODS AND RESULTS: We performed targeted gene sequencing for 710 probands younger than 16-year-old with inherited primary arrhythmia syndromes (IPAS). RYR2 mutations were identified in 63 probands, and 3 probands displayed clinical features different from CPVT. A proband with p.E4146D developed ventricular fibrillation (VF) and QT prolongation whereas that with p.S4168P showed QT prolongation and bradycardia. Another proband with p.S4938F showed short-coupled variant of torsade de pointes (scTdP). To evaluate the functional alterations in these three mutant RyR2s and p.K4594Q previously reported in a long QT syndrome (LQTS), we measured Ca2+ signals in HEK293 cells and HL-1 cardiomyocytes as well as Ca2+-dependent [3H]ryanodine binding. All mutant RyR2s demonstrated a reduced Ca2+ release, an increased endoplasmic reticulum Ca2+, and a reduced [3H]ryanodine binding, indicating loss-of-functions. In HL-1 cells, the exogenous expression of S4168P and K4594Q reduced amplitude of Ca2+ transients without inducing Ca2+ waves, whereas that of E4146D and S4938F evoked frequent localized Ca2+ waves. CONCLUSION: Loss-of-function RYR2 mutations may be implicated in various types of arrhythmias including LQTS, VF, and scTdP, depending on alteration of the channel activity. Search of RYR2 mutations in IPAS patients clinically different from CPVT will be a useful strategy to effectively discover loss-of-function RYR2 mutations.


Long QT Syndrome , Tachycardia, Ventricular , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Calcium/metabolism , HEK293 Cells , Humans , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Mutation , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
...